1,921 research outputs found

    The Extreme Hosts of Extreme Supernovae

    Get PDF
    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of 17 luminous supernovae (LSNe, having peak M_V 100 M_☉), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR

    Multi-color Optical and NIR Light Curves of 64 Stripped-Envelope Core-Collapse Supernovae

    Full text link
    We present a densely-sampled, homogeneous set of light curves of 64 low redshift (z < 0.05) stripped-envelope supernovae (SN of type IIb, Ib, Ic and Ic-bl). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mt. Hopkins in Arizona, with the optical FLWO 1.2-m and the near-infrared PAIRITEL 1.3-m telescopes. Our dataset consists of 4543 optical photometric measurements on 61 SN, including a combination of UBVRI, UBVr'i', and u'BVr'i', and 2142 JHKs near-infrared measurements on 25 SN. This sample constitutes the most extensive multi-color data set of stripped-envelope SN to date. Our photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SN were observed spectroscopically by the CfA SN group, and the spectra are presented in a companion paper (Modjaz et al. 2014). A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SN will be presented in a follow-up paper.Comment: 26 pages, 17 figures, 8 tables. Revised version resubmitted to ApJ Supplements after referee report. Additional online material is available through http://cosmo.nyu.edu/SNYU

    Creativity and the computer nerd: an exploration of attitudes

    Get PDF
    This study arises from our concern that many of our best art and design students are failing to make the most of the opportunities provided by IT because of their fear or dislike of computers. This not only deprives them of useful skills, but, even more importantly, deprives many IT based developments of their input. In this paper we investigate the relationship between attitudes to creativity and to computers among students. We quickly discard an approach based on theories of personality types as philosophically and educationally problematic. An approach based on the self-concept of artists and designers, in relation to their own creativity and to their feelings about computers, offers more hope of progress. This means that we do not try to define the attributes of "creative people". Rather, we ask what creativity means to students of art and design and relate these responses to their attitudes to computers. Self-concept depends on how the subjects see themselves within society and culture, and is liable to change as culture changes. One major instrument of cultural change at the present time is the growth of IT itself. We then describe a first attempt at using a psychological method - Kelly's Repertory Grids - to investigate the self-concept of artists and designers. It is hoped to continue with this approach in further studies over the next few years

    High Density Circumstellar Interaction in the Luminous Type IIn SN 2010jl: The first 1100 days

    Full text link
    HST and ground based observations of the Type IIn SN 2010jl are analyzed, including photometry, spectroscopy in the ultraviolet, optical and NIR bands, 26-1128 days after first detection. At maximum the bolometric luminosity was 3×1043\sim 3\times10^{43} erg/s and even at 850 days exceeds 104210^{42} erg/s. A NIR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is >6.5×1050> 6.5\times10^{50} ergs, excluding the dust component. The spectral lines can be separated into one broad component due to electron scattering, and one narrow with expansion velocity 100\sim 100 km/s from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after 50\sim 50 days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an r2r^{-2} CSM with a mass loss rate of 0.1\sim 0.1 M_sun/yr. The total mass lost is >3> 3 M_sun. These properties are consistent with the SN expanding into a CSM characteristic of an LBV progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM still opaque to electron scattering.Comment: ApJ in press. Updated and changed after referees comment

    Ongoing Formation of Bulges and Black Holes in the Local Universe: New Insights from GALEX

    Get PDF
    We analyze a volume-limited sample of massive bulge-dominated galaxies with data from both the Sloan Digital Sky Survey and the Galaxy Evolution Explorer (GALEX) satellite. The galaxies have central velocity dispersions greater than 100 km/s and stellar surface mass densities that lie above the value where galaxies transition from actively star forming to passive systems. The sample is limited to redshifts 0.03<z<0.07. At these distances, the SDSS spectra sample the light from the bulge-dominated central regions of the galaxies. The GALEX NUV data provide high sensitivity to low rates of global star formation in these systems. Our sample of bulge-dominated galaxies exhibits a much larger dispersion in NUV-r colour than in optical g-r colour. Nearly all of the galaxies with bluer NUV-r colours are AGN. Both GALEX images and SDSS colour profiles demonstrate that the excess UV light is associated with an extended disk. We find that galaxies with red outer regions almost never have a young bulge or a strong AGN. Galaxies with blue outer regions have bulges and black holes that span a wide range in age and accretion rate. Galaxies with young bulges and strongly accreting black holes almost always have blue outer disks. Our suggested scenario is one in which the source of gas that builds the bulge and black hole is a low mass reservoir of cold gas in the disk.The presence of this gas is a necessary, but not sufficient condition for bulge and black hole growth. Some mechanism must transport this gas inwards in a time variable way. As the gas in the disk is converted into stars, the galaxies will turn red, but further gas infall can bring them back into the blue NUV-r sequence.(Abridged)Comment: 34 pages, 16 figures. Accepted for the GALEX special issue of ApJ

    The identification of informative genes from multiple datasets with increasing complexity

    Get PDF
    Background In microarray data analysis, factors such as data quality, biological variation, and the increasingly multi-layered nature of more complex biological systems complicates the modelling of regulatory networks that can represent and capture the interactions among genes. We believe that the use of multiple datasets derived from related biological systems leads to more robust models. Therefore, we developed a novel framework for modelling regulatory networks that involves training and evaluation on independent datasets. Our approach includes the following steps: (1) ordering the datasets based on their level of noise and informativeness; (2) selection of a Bayesian classifier with an appropriate level of complexity by evaluation of predictive performance on independent data sets; (3) comparing the different gene selections and the influence of increasing the model complexity; (4) functional analysis of the informative genes. Results In this paper, we identify the most appropriate model complexity using cross-validation and independent test set validation for predicting gene expression in three published datasets related to myogenesis and muscle differentiation. Furthermore, we demonstrate that models trained on simpler datasets can be used to identify interactions among genes and select the most informative. We also show that these models can explain the myogenesis-related genes (genes of interest) significantly better than others (P < 0.004) since the improvement in their rankings is much more pronounced. Finally, after further evaluating our results on synthetic datasets, we show that our approach outperforms a concordance method by Lai et al. in identifying informative genes from multiple datasets with increasing complexity whilst additionally modelling the interaction between genes. Conclusions We show that Bayesian networks derived from simpler controlled systems have better performance than those trained on datasets from more complex biological systems. Further, we present that highly predictive and consistent genes, from the pool of differentially expressed genes, across independent datasets are more likely to be fundamentally involved in the biological process under study. We conclude that networks trained on simpler controlled systems, such as in vitro experiments, can be used to model and capture interactions among genes in more complex datasets, such as in vivo experiments, where these interactions would otherwise be concealed by a multitude of other ongoing events
    corecore